

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 1 of 89

BONVOYAGE

From Bilbao to Oslo, intermodal mobility solutions, interfaces and applications for people and

goods, supported by an innovative communication network

Research and Innovation Action GA 635867

Deliverable D6.1:

Technology dependent interfaces

Deliverable Type: Report

Deliverable Number: 6.1

Contractual Date of
Delivery to the EU:

30.04.2017

Actual Date of
Delivery to the EU:

29.04.2017

Title of Deliverable: Technology dependent interfaces

Work package
contributing to the

Deliverable:

WP6

Dissemination Level: Public

Editor: Stephan Strodl (FLU)

Author(s): Stephan Strodl, Daniel Skrach, Roman Pickl
(FLU), Giuseppe Tropea, Andrea Detti (CNIT),

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 2 of 89

Etienne Labyt, Audrey Vidal (CEA), Raffaele
Gambuti, Federico Lisi, Silvia Canale (CRAT),
Ignacio Gonzalez Fernandez, Guillermo Ibanez
Gomez (ATOS)

Internal Reviewer(s): TRIT

Abstract: Deliverable D6.1 aims at the documentation of
the technology dependent interfaces towards
the external actors. It contains the description
of design and implementation of the platform
services that provide interfaces to both
internal and external stakeholders as well as
the specification of their APIs, algorithms,
protocols and low-level
architectures/functions, where applicable. It
also contains information about external
services used by the platform and the design
of the BONVOYAGE mobile application.

Keyword List: Interfaces, APIs, Architecture

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 3 of 89

TABLE OF CONTENTS

LIST OF FIGURES ... 5

LIST OF TABLES ... 6

ABBREVIATIONS ... 7

BONVOYAGE GLOSSARY.. 8

1 INTRODUCTION ... 9

1.1 DELIVERABLE RATIONALE ... 9

1.2 QUALITY REVIEW.. 10

1.3 EXECUTIVE SUMMARY ... 11

1.3.1 Deliverable description ... 11

1.3.2 Summary of results .. 11

2 TECHNOLOGY DEPENDENT INTERFACES .. 13

3 INTERNAL SERVICES AT THE APPLICATION LAYER .. 16

3.1 GREENPOINTS MODULE ... 16

3.1.1 Description ... 16

3.1.2 API .. 17

3.1.3 Data formats .. 17

3.1.4 Usage.. 18

3.2 FEEDBACK MODULE .. 21

3.2.1 Description ... 21

3.2.2 API .. 21

3.2.3 Data formats .. 21

3.2.4 Usage.. 22

3.3 LOCATION MODULE .. 22

3.3.1 Description ... 22

3.3.2 API .. 23

3.3.3 Data formats .. 25

3.3.4 Usage.. 26

3.4 USER TRANSPORTATION MODE RECOGNITION LIBRARY AND USER STRESS LEVEL LIBRARY ... 27

3.4.1 Integration of UTMR Library .. 27

3.4.2 UTMR Library Usage .. 29

3.4.3 ¦ǎŜǊΩǎ {ǘǊŜǎǎ [ŜǾŜƭ ό¦{[ύ [ƛōǊŀǊȅ LƴǘŜƎǊŀǘƛƻƴ.. 31

3.4.4 USL Library Usage .. 33

3.5 CAR POOLING ... 36

3.5.1 Description ... 36

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 4 of 89

3.5.2 API .. 36

3.5.3 Data formats .. 39

3.5.4 Usage.. 47

4 INTERNAL SERVICES AT THE ORCHESTRATOR LAYER .. 48

4.1 REAL-TIME INTERMODAL ROUTING SERVICE ... 48

4.1.1 Description ... 48

4.1.2 API .. 48

4.1.3 Data formats .. 49

4.1.4 Usage.. 53

5 INTERNAL SERVICES AT THE INFRASTRUCTURE LAYER ... 56

5.1 SOLOIST ROUTING SERVICE ... 56

5.2 PUBLISH ς SUBSCRIBE ... 56

5.2.1 Description ... 56

5.2.2 API .. 59

5.2.3 Data formats .. 60

5.2.4 Usage.. 60

5.3 DISCOVERY SERVICES .. 68

5.3.1 Description ... 68

5.3.2 OGB JAVA API ... 68

5.3.3 OGB HTTP API ... 77

6 EXTERNAL SERVICES ... 82

6.1 BONVOYAGE MOBILE APPLICATION ... 82

6.2 FIREBASE .. 84

6.3 DATA SOURCES.. 85

6.3.1 Handling of travel data .. 86

7 SUMMARY ... 88

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 5 of 89

List of Figures

Figure 1 High-level architecture with internal and external services ... 15

Figure 2 Detail of the Application Layer and Mobile App ... 15

Figure 3 SPROUTE Data object GreenPoints ... 18

Figure 4 BONVOYAGE App Route Details.. 19

Figure 5 BONVOYAGE App Greenpoint Profiles .. 20

Figure 6 BONVOYAGE Mobile Application Feedback.. 22

Figure 7 Ride examples: Blue line represents the path of a driver, yellow and green dashed line

ǊŜǇǊŜǎŜƴǘ ǇŀǎǎŜƴƎŜǊΩǎ ǊŜǉǳŜǎǘǎ .. 41

Figure 8 Solution object example: blue line represents the path of the driver that picks the first

passenger up in node C (yellow line), then drives to node F to pick also the second passenger up

(green line). Then the three users go to node H to leave the first passenger and finally the driver

and the second passenger go to destination node I. .. 46

Figure 9 Structure and concepts of the SPROUTE format .. 50

Figure 10 Publish-subscribe reference architecture ... 57

Figure 11 JSON message structure used in the BONVOYAGE Communication System 60

Figure 12 A set of tiles for a geographical area .. 62

Figure 13 Data from NPRA DatexII server with area of interest ... 63

Figure 14 Hierarchical scheme of names (and folders) .. 64

Figure 15 BONVOYAGE Mobile Application interaction ... 83

Figure 16 Login screen of the BONVOYAGE Mobile Application .. 84

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 6 of 89

List of Tables

Table 1: Abbreviations ...7

Table 2: BONVOYAGE Dictionary ...8

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 7 of 89

Abbreviations

ABBREVIATION DEFINITION

DoA Description of Action

DS Data source

ICS Internames Communication System

MDHT MetaData Handling Tool

MMMDB Multi-Modal Mobility Database

OGB OpenGeoBase

WP Workpackage

Table 1: Abbreviations

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 8 of 89

BONVOYAGE Glossary

Table 1 lists and describes the terms that have been considered relevant in this deliverable.

BONVOYAGE GLOSSARY

TERM DEFINITION

ICS Internames Communication System

Metadata Handling
Tool

The MDHT is the component of the BONVOYAGE architecture that
performs monitoring and parsing of the data coming from external Data
Sources of Transport Operators

Multi-Modal
Mobility Database

The MMMDB is the component of the BONVOYAGE architecture that
ƘƻƭŘǎ ŜǎǎŜƴǘƛŀƭ ƛƴŦƻǊƳŀǘƛƻƴ ŀōƻǳǘ ǳǎŜǊǎΩ ǇǊƻŦƛƭŜǎ ŀƴŘ ŀōƻǳǘ Ƴǳƭǘƛ-
modality of the computed solutions

OGB The OpenGeoBase is the discovery service of the BONVOYAGE platform

Orchestrator
The BONVOYAGE Orchestrator is a decomposition approach to solve the
trip planning on a multimodal network by means of soloists.
Orchestrators can act as national access points for trip planning.

Soloist
The soloists are distributed trip planning services to handle trip planning
tasks for a part of the overall transportation and road network.

SPROUTE
SPROUTE is an open source format to exchange routing information
(request and response) as JSON objects.

Table 2: BONVOYAGE Dictionary

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 9 of 89

1 Introduction

1.1 Deliverable rationale

Work Package 6 (WP6) focuses on designing and developing all the mechanisms needed to

seamlessly interact with the heterogeneous external actors of the BONVOYAGE platform. In

particular, this WP is in charge of the sensing and actuation functionalities of the platform.

As stated in the Description of Action (DoA), the sensing functionalities are not limited to

ŎƻƴǾŜƴǘƛƻƴŀƭΣ ǘŜŎƘƴƻƭƻƎȅ ŘŜǇŜƴŘŜƴǘΣ ŀŘŀǇǘŜǊǎ ǘƻ ŀŎŎŜǎǎ ǘǊŀƴǎǇƻǊǘ ƻǇŜǊŀǘƻǊǎΩ Řŀǘŀ ǎƻǳǊŎŜǎ ŀƴŘ

systems, but also mobile applications and optimized interfaces to gather end user data and

feedback (participatory sensing).

¢ƘŜ ŀŎǘǳŀǘƛƻƴ ŦǳƴŎǘƛƻƴŀƭƛǘƛŜǎ ƻŦ ǘƘŜ ǇƭŀǘŦƻǊƳ ƛƴǘŜǊŀŎǘ ǿƛǘƘ ǘƘŜ ǎǇŜŎƛŦƛŎ ¢ǊŀƴǎǇƻǊǘ hǇŜǊŀǘƻǊǎΩ

platforms based on the Intelligent Transport Functionalities of the platform (developed in WP4)

and the service adaptation functionalities (developed in WP5).

Due to the heterogeneity and technological complexity of the different research fields involved

in WP6, the Work Package has been structured in three main tasks:

¶ Task 6.1: Technology / Operator dependent interfaces

¶ Task 6.2: Apps

¶ Task 6.3: Modelling and performance analysis in realistic scenarios

The main objective of this deliverable (Deliverable D6.1) is to document the design and

development of the technology dependent interfaces towards the external actors (transport

ƻǇŜǊŀǘƻǊǎΩ ŀƴŘ ǊŜƭŀǘŜŘ ǎȅǎǘŜƳǎ κ Řŀǘŀ ǎƻǳǊŎŜǎΣ ŜƴŘ ǳǎŜǊ ŀǇǇƭƛŎŀǘƛƻƴǎύΦ Lǘ ǘƘŜǊŜŦƻǊŜ Ŏƻƴǘŀƛƴǎ ǘƘŜ

description of the components providing the multimodal integrated interfaces to internal and

external stakeholders as well as the specification of the APIs, algorithms, protocols and low-level

architectures/functions, where applicable. For further details on the relationship between the

use cases defined in WP2 and the APIs specified in this document see Deliverable D7.1

Integration Plan.

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 10 of 89

1.2 Quality review

The internal reviewer of this deliverable is TRIT.

VERSION CONTROL TABLE

VERSION N. PURPOSE/CHANGES AUTHOR DATE

0.1 Initial draft FLU 31.10.2016

0.2 Revised structure FLU 08.02.2017

0.3 Contributions by partners
CRAT, CNIT,
CEA, FLU

16.03.2017

0.4 Consolidation and document structure FLU 22.03.2017

0.45 Update of car pooling section CRAT 11.04.2017

0.5 Introduction added FLU 12.04.2017

0.6 Update of CEA contribution CEA 18.04.2017

0.7 Contribution for data sources ATOS 20.04.2017

0.8 First draft FLU 21.04.2017

0.82 Second draft CNIT 24.04.2017

0.84 Third draft FLU 25.04.2017

0.86 Fourth draft CNIT 26.04.2017

0.9 Quality review TRIT 27.04.2017

1.0 Final version FLU, CNIT 28.04.2017

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 11 of 89

1.3 Executive summary

1.3.1 Deliverable description

The aim of this deliverable is to present the public APIs of BONVOYAGE to external stakeholders.

Furthermore, external APIs that are used (e.g. Firebase) are discussed. The deliverable does not

repeat the work of WP3, 4, and 5 but provides a guide about how the BV platform can be used by

external stakeholders (e.g. app, platform or service provider developers). It is a technical

deliverable that focuses on the interfaces implementation of the services developed within the

BONVOYAGE project.

This document is organized in the following sections:

¶ Section 1 describes and summarizes the deliverable organization.

¶ Section 2 describes how the components providing the multimodal integrated interfaces

fit into the BONVOYAGE architecture.

¶ Sections 3 to 5 deal with the BONVOYAGE components (internal services) at the three

layers of the architecture that provide public APIs to external stakeholders.

¶ Section 6 deals with components that consume the services provided by the BONVOYAGE

platform (e.g. the BONVOYAGE app) or are consumed by BONVOYAGE services (e.g.

external data sources and services).

¶ Section 7 summarizes key results and concludes the deliverable.

1.3.2 Summary of results

This deliverable provides extensive descriptions of the components and APIs as a guideline for

external integrators to seamlessly harness functionalities developed within the BONVOYAGE

project.

In particular, the following objectives where achieved in accordance with the Description of

Action (DoA):

¶ Evaluation and selection of relevant systems of transports operators and related data

sources

¶ Design of the technology dependent interfaces, in compliance with the specification and

the architectural design output of WP2.

¶ Design of optimized interfaces (REST/JSON based) between the BONVOYAGE platform

and proper mobile applications.

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 12 of 89

¶ Implementation of the interfaces in the chosen programming languages and frameworks.

¶ Preliminary functional unit tests to verify the correct behaviour of the implemented

software components.

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 13 of 89

2 Technology Dependent Interfaces

In a nutshell, this Technology Dependent Interfaces deliverable provides fundamental technical

guidelines for the exploitation of the project results of BONVOYAGE. The deliverable presents the

technical aspects of the services developed in WP 3, 4, 5 and 6, providing a practical guideline for

usage and integration. The definitions of the various interfaces include the type of interface (e.g.

web service or JAVA interface), input and output data and deployment endpoint. The used data

formats are specified in detail, and we give practical examples of the data itself. The provided

information enables external systems to integrate BONVOYAGE services into existing or new

solutions with reasonable effort.

More in details, and following along the lines depicted in Figure 1, this deliverable presents the

internal services provided by the BONVOYAGE platform in terms of the public APIs they offer to

external users. They enable external stakeholders to integrate BONVOYAGE services into their

environment. The detailed description of the interfaces, including examples and error codes,

ensures a seamless integration with minimal effort into other environments. The deliverable

focuses on the technical aspects of the services and on the APIs they provide.

Furthermore, the deliverable discusses the strategies for integration of external services and

data sources into the BONVOYAGE platform. External services include services for authentication

based on reuse of existing user identities and front-ends to travel data sources that are

integrated by using a federation approach (see D1.2 Project Vision).

The mobile application of the BONVOYAGE platform is also discussed in this deliverable as it

represents a practical example of the usage of BONVOYAGE services by an external entity. The

mobile app is easily built on top of the services offered by the BONVOYAGE platform by solely

using the aforementioned public APIs, including the Android libraries for User Mode

Transportation Recognition and User Stress Level, developed within the project.

Figure 1 presents the high-level architecture of the BONVOYAGE platform in terms of these

internal (depicted at the top, in blue colours) and external services (depicted at the bottom, in

green colours)Σ ŀƴŘ ƛƴ ǘŜǊƳǎ ƻŦ ǘƘŜ ƛƴǘŜǊƴŀƭ ǎŜǊǾƛŎŜǎΩ !tLǎ (continuous black arrows), since they

provide publicly available interfaces. Dashed lines do not represent APIs but flow of information

from external services to the platform, instead. The services are organized into three different

Layers: Application, Orchestrator and Infrastructure. Services that provide functionalities for the

end user (such as calculating Greenpoints or collecting feedback) are at the Application Layer.

Services for computing routes and merging travel solutions are at the Orchestrator Layer.

Services that provide functionalities for communication, federation and discovery of data

sources, such as Internames Communication System (ICS) and OpenGeoBase (OGB) are at the

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 14 of 89

Infrastructure Layer. Both ICS and OGB provide an extensive set of functionalities to support

infrastructural and communication service that can be easily integrated into other environments.

While this deliverable presents their detailed APIs, other deliverables are devoted to the

exhaustive description of how they are used to gain access to external data services hosted by

Transport Operators, which are more relevant for the Infrastructure Layer, and are made

available via a federation of Data Sources (see again Figure 1). Specifically, the reader is

redirected to deliverable D5.1 for what concerns the adaptation of data sources to BONVOYAGE,

D3.1, D3.2, D3.3 for the technicalities of how the communication infrastructure is used to

disseminate travel data efficiently, and to D7.1 on how the various pieces are integrated. A brief

high-level overview is given in section 6.3 of this deliverable to serve the purpose of descriptive

unity and continuity.

Figure 2 provides a detailed view of the Application Layer, to clarify how external integrators can

develop end user constructs based on BONVOYAGE. Services at the Application Layer focus on

functionalities such as conveying route information to users, managing user feedback and

offering car-pooling. The figure shows that the Application Server, which acts as a single point of

contact, provides the hub for these services. The Application Server handles requests from the

external users and distributes the request to the corresponding modules and services. The

BONVOYAGE mobile application communicates only with the Application Server that provides all

required interaction. The mobile application itself is a complex construct that also makes use of

other Application Layer services developed in BONVOYAGE, which are libraries for real-time

recognition of the User Transport Mode and Stress Level. The APIs of these components and

guidelines for reuse are presented in this deliverable, too. The mobile app uses the APIs provided

by the modules through the Application Server for feedback, Greenpoints and route calculations,

as described later on. The Application Server acts as a proxy for the requests and provides error

handling in terms of timeouts and authentication.

Regarding the integration of external services at the Application Layer into the BONVOYAGE

ecosystem, Figure 2 shows for example the use of the Firebase service for authentication, as

discussed in Section 6.2, by the Application Server, and the usage of standard (for instance,

Android) toolkits for mobile apps GUI developing by the Mobile App.

Summing up, this deliverable is meant as a practical guide for reuse and integration of all publicly

available services and the relevant components. It allows gaining further technical insight into

the BONVOYAGE implementation, and is propaedeutic to reading D7.1.

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 15 of 89

Figure 1 High-level architecture with internal and external services

Figure 2 Detail of the Application Layer and Mobile App

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 16 of 89

3 Internal Services at the Application Layer

This section presents the interfacesΩ details of the BONVOYAGE Application Layer components

(services) that provide public APIs to external stakeholders. Generally speaking, all internal

services that are deployed within the BONVOYAGE ecosystem provide public APIs that can be

used by end users as well as system integrators.

BONVOYAGE implements a fidelity program that motivates user to use more sustainable travel

solutions. The implementation of the Greenpoint module is presented in Section 3.1 including a

Greenpoint profile providing user feedback to their travel choices. Feedback from the end users

can be reported via the feedback module in Section 3.2. Location based visualisation on end

ǳǎŜǊΩǎ devices is supported by the location service as described in Section 3.3. The Android

libraries for User Model Transport Recognition and User Stress Level are presented in Section

3.4. Section 3.5 describes the BONVOYAGE car-pooling service and its interfaces.

3.1 Greenpoints module

3.1.1 Description

The Greenpoints module implements the Green Score Policy of BONVOYAGE. The policy

evaluates the user travel behaviour in time and categorizes it into four different eco-friendliness

profiles. The policy considers the past travel choices of the user. It encourages the user to select

more sustainable travel solutions. Based on the profiles, different users will receive different

scores for the same travel solution, thus providing incentives/penalties. Detailed description

about the Green Score Policy is provided in D4.1 Design of the Intelligent Transport Functionality.

The Greenpoints module implements services to calculate the individual greenpoints for the user

and compute CO2 for travel alternativesΦ .ŀǎŜŘ ƻƴ ǘƘŜ ǳǎŜǊΩǎ ŎƘƻƛŎŜ ǘƘŜ profile is updated. The

profile implements a feedback loop to inform the user about the impact of the choices.

Moreover, the sum of collected greenpoints and CO2 emissions of all trips are held in the profile.

The Greenpoints module is implemented as two services, the profile information and the

calculation service. The information service provides a web service to get the userΩǎ greenpoints

data. The calculation service adds the greenpoints and CO2 emissions for an individual user to

the route alternatives. All route requests to the BONVOYAGE platform are managed by the

Application Server, where the greeenpoint information is glued the route alternatives and

packaged as SPROUTE format. The extension of the format is in described in Deliverable 5.1

Design of the adaptation functionality, while the details of the GetRoutes routing API is described

in Section 4.1.

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 17 of 89

3.1.2 API

GreenPoint Information Profile Service

URL https:// test-bonvoyage.fluidtime.com/user/profile/score

Input Data: No input data are needed
JWT authorization is required in the HTTP header for authorisation of the
user.

Output Data: UserProfile (JSON)

Scores {
greenpoints: number
co2Emission: number
savedTrips: integer *
ecoBehaviour: integer *
}

Response codes:

200 OK
403 The provided security credentials did not validate
500 General error
503 External web service unavailable or an error occurred while

communicating with an external web service.

Communication
protocol

GET HTTP/JSON

JAVA API ς Application Service

GreenPoint Calculation Service

URL public RouteResult transform(RouteResult sourceResult)

Input Data: Route alternatives (SPROUTE FORMAT)
USER-ID (FIREBASE TOKEN)

Output Data: Route alternatives (SPROUTE FORMAT)
Communication
protocol

Java

3.1.3 Data formats

The greenpoint values are added to SPROUTE definition for route and route segment as shown in

Figure 3. The greenpoints of a route is a personalised calculation based on the user profile.

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 18 of 89

Figure 3 SPROUTE Data object GreenPoints

3.1.4 Usage

Greenpoints and CO2 emissions are shown in the BONVOYAGE mobile application for each travel

option and for each leg of the travel option as shown in Figure 4.

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 19 of 89

Figure 4 BONVOYAGE App Route Details

Figure 5 shows two examples of the profile screen of the application providing a quick visual

feedback to the user about the travel behaviour.

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 20 of 89

Figure 5 BONVOYAGE App Greenpoint Profiles

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 21 of 89

3.2 Feedback module

3.2.1 Description

¢ƘŜ ŦŜŜŘōŀŎƪ ƳƻŘǳƭŜ ǇǊƻǾƛŘŜǎ ǘƘŜ ƳŜŎƘŀƴƛǎƳ ǘƻ ƎŜǘ ǘƘŜ ŜƴŘ ǳǎŜǊΩǎ ǊŜǎǇƻƴǎŜ about the

BONVOYAGE service and the actual trip. The module implements a web service to post the

feedback to the BONVOYAGE platform. Three types of feedback are currently implemented in

the BONVOYAGE mobile application: Feedback to the BONVOYAGE Service, travel solutions and

actual trip.

3.2.2 API

Feedback Service

URL https:// test-bonvoyage.fluidtime.com/user/feedback

Input Data: Feedback {
Feedback type: integer
tripID: string
rating: integer
text: string
}

Output Data: Response codes:
201 OK

400 The provided input parameters did not validate.
403 The provided security credentials did not validate

500 General error

503 External web service unavailable or an error occurred while
communicating with an external web service.

Communication
protocol

POST HTTP/JSON

3.2.3 Data formats

The feedback is provided as a JSON object, as content of a POST request. It includes the feedback

type, a reference to the trip, a rating and a free text.

Feedback {

Feedback Type: integer

tripID: string

rating: integer

text: string

}

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 22 of 89

3.2.4 Usage

The feedback module is used within the mobile application to submit the feedback of the users

about the BONVOYAGE Service, travel solutions and actual trip as shown in Figure 6.

Figure 6 BONVOYAGE Mobile Application Feedback

3.3 Location module

3.3.1 Description

The location module provides geo information and descriptions about POIs for the mobile

application. The module is able to aggregate different data sources before presenting the data,

so that some POIs can be, for instance, discovered and fetched through OGB and aggregated by

the location module for presentation at the client interface with data coming from other mobile-

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 23 of 89

app-specific channels. The module provides services to request POIs in the surroundings or for a

precisely specified area, in order to display them on the mobile device. Thus, two services are

deployed: (1) POIs by radius and (2) POIs by bounding box.

3.3.2 API

LocationByRadius

URL https://t est-bonvoyage.fluidtime.com/locationByRadius

Input Data:

Name Description Mandatory Type

cLon
The center coordinate's longitudinal
value. Yes

number
(double)

cLat
The center coordinate's latitudinal
value. Yes

number
(double)

limit
The maximum number of returned
locations. No

integer
(int32)

Output Data: Response codes:
201 OK

400 The provided input parameters did not
validate.

500 General error

LocationResult:
 description: "Result of a request for locations."
 properties:
 locations:
 description: "List of returned locations."
 items:
 $ref: "#/definitions/Location"
 type: "array"
 type:"object"

Location {
Represents a geo-coded Location.
 address:
{
 description: string

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 24 of 89

 identifier: string
 name: string *
 uri: string
}
 coordinate:
 NormalizedWgs84Coordinate {
 A coordinate in the WGS84 coordinate system.
 latitude: number *
 longitude: number *
}
description: string
}

Communication
protocol

POST HTTP/JSON

LocationByBoundingbox
URL https:// test-bonvoyage.fluidtime.com/locationByBoundingbox

Input Data:

Name Description Mandatory Type

neLon
The north-east boundary coordinate's
longitudinal value. Yes

number
(double)

neLat
The north-east boundary coordinate's
latitudinal value. Yes

number
(double)

swLon
The south-west boundary
coordinate's longitudinal value. Yes

number
(double)

swLat
The south-west boundary
coordinate's latitudinal value. Yes

number
(double)

limit
The maximum number of returned
locations. No

integer
(int32)

Output Data: Response codes:
201 OK

400 The provided input parameters did not
validate.

500 General error

LocationResult:
 description: "Result of a request for locations."
 properties:
 locations:
 description: "List of returned locations."

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 25 of 89

 items:
 $ref: "#/definitions/Location"
 type: "array"
 type:"object"

Location {
Represents a geo-coded Location.
 properties:
 address:
 description: "Address related to the enclosing context."
 properties:
 description:
 description: "Human readable description of the enclosing context."
 type: "string"
 name:
 description: "Textual representation of the address."
 type: "string"

 coordinate:
 NormalizedWgs84Coordinate {
 A coordinate in the WGS84 coordinate system.
 latitude: number *
 longitude: number *
}
 categoryId:
 description: "Location category identifier."
 type: "string"
 description:
 description: "Human readable description of the enclosing context."
 type: "string"
}

Communication
protocol

POST HTTP/JSON

3.3.3 Data formats

The result data format is a simple JSON response as defined in Section 3.3.2. It consists of an

array of the Location data type. The simple Location format contains the following data objects:

an optional address field, coordinates, category id and a description.

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 26 of 89

3.3.4 Usage

Below an example of a response is shown that can be used to display the information in the

mobile application, either as list or as locations in the map.

{

 "locations": [

 {

 ñaddressò:

 {

 "description": "W07 - Lindengasse",

 } ,

 "coordinate": {

 "longitude": 16.350818280467,

 "latitude": 48.200201102435

 },

 "categoryId": "1" ,

 "description": "City Zipcar",

 },

 {

 ñaddressò:

 {

 "description": "Lindengasse 31 - 33",

 },

 "coordinate": {

 "longitude": 16.351311666667,

 "latitude": 48.200295

 },

 "categoryId": "1 02"

 "description": " W- 5YOY Sym 5 0 ccm"

 },

 {

 ñaddressò:

 {

 "description": " Kollergerngasse ",

 },

 "coordinate": {

 "longitude": 16.350918,

 "latitude": 48.198527

 },

 "categoryId": "6",

 "description": "Mariahilferstraße Ecke Kollergerngasse

Citybike Website 18 freie

Stellplätze, 2 freie Räder

 }

 }

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 27 of 89

3.4 User Transportation Mode Recognition Library and User Stress Level Library

Within the BONVOYAGE project two Android libraries (one for detection of stress level and

another one for recognition of transport mode) are developed. The libraries are integrated into

the BONVOYAGE App (described in Section 6.1), but can also be integrated into other Android

applications. These libraries include:

- Java code to connect to smartphone sensors (for transport) or Empatica wristband

sensors (foǊ ǳǎŜǊΩǎ ǎǘǊŜǎǎ ƭŜǾŜƭύ ŀƴŘ ŎƻƭƭŜŎǘ Řŀǘŀ

- Java code to process sensors data, extract features and perform classification to provide

as output either a transport mode (ex: class 1 = road, class 2 ς ǘǊŀƛƴΧύ ƻǊ ŀ ǎǘǊŜǎǎ ƭŜǾŜƭ

(from 0 to 1 by step of 0.1).

Within the BONVOYAGE context, these components are integrated into the BONVOYAGE App.

Transport mode and stress output data will be sent from the application to the User Profiler Tool

back end (UPT-BE) (please refer to D4.x for the details) for user clustering and refining the user

profile, either for pre-trip planning (based on refined profile from data collected during previous

travels) or on trip assistance (based on real time data collected during the travel).

The UTMR stands for User Transportation Mode Recognition and is a java/android library which

aims at recognizing, in real-time, the current transportation mode of the smartphone user (car

walk, bike, Χύ through the use of smartphone sensors.

3.4.1 Integration of UTMR Library

3.4.1.1 Application manifest file

Service declaration

The usage of the service has to be declared in the main application manifest file.

<service android :name= "bonvoyage.service.UTMRService" />

Required Permissions

The main android application should have at least the following permissions

¶ Read and write into external storage: recognition models have to be copied and read on

the smartphone memory.

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 28 of 89

¶ Access coarse or fine location. This is mainly for the GPS and BLE use.

Note: not having those permissions granted may cause the application crash.

The following lines have to be added to the manifest file :

<uses - permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

<uses - permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

<uses - permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

<uses - permission android:name="android.permission.ACCESS_FINE_LOCATION" />

In Android 6 and further, permissions need to be granted explicitly by the smartphone user.

Applications integrating the library should check and ask the user before calling the library.

3.4.1.2 Project integration

¢Ƙƛǎ ǇŀǊǘ ŜȄǇƭŀƛƴǎ Ƙƻǿ ǘƻ ƛƴǘŜƎǊŀǘŜ ǘƘŜ ƭƛō ƛƴ !ƴŘǊƻƛŘ {ǘǳŘƛƻΦ ¢ƘŜ ά.ƻƴǾƻȅŀƎŜǎŜǊǾƛŎŜ-ǊŜƭŜŀǎŜΦŀŀǊέ

ƴŜŜŘǎ ǘƻ ōŜ ŎƻǇƛŜŘ ƛƴ ǘƘŜ ǇǊƻƧŜŎǘ ǎǘǊǳŎǘǳǊŜ ǳƴŘŜǊ ǘƘŜ άƭƛōǎέ ŦƻƭŘŜǊΦ ¢Ƙƛǎ ŦƻƭŘŜǊ ƛǎ ŀ ŎƘƛƭŘ ƻŦ ǘƘŜ

άŀǇǇέ ŦƻƭŘŜǊ ŀƴŘ ǎƛōƭƛƴƎ ƻŦ ǘƘŜ άǎǊŎέ ŦƻƭŘŜǊΦ ¢ƘŜ ŦƻƭƭƻǿƛƴƎ ƭƛƴŜǎ ƴŜŜŘ ǘƻ ōŜ ŀŘŘŜŘ ǘƻ ǘƘŜ

application gradle file:

repositories

{

 flatDir

 {

 dirs 'libs'

 }

}

dependencies

{

 compile(name: 'bonvoyageservice - release' , ext : 'aar')

}

The UTMR library uses third party libraries, which need to be added in the project in the

application gradle file:

dependencies {

compile 'com.android.support:appcompat - v7:<LOCAL_VERSION>

compile 'nz.ac.waik ato.cms.weka:weka - stable:3.6.13'

compile 'commons - io:commons - io:2.5'

compile 'com.google.guava:guava:16.0.1'

}

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 29 of 89

The library should then be ready for usage in the application. For a complete gradle file, please

ŎƘŜŎƪ ǘƘŜ ¦¢aw¢ǳǘƻ!ǇǇΩǎ ƎǊŀŘƭŜ ŦƛƭŜΦ ¢ƘŜ minimal Android SDK version is 17 (JellyBean 4.2).

3.4.2 UTMR Library Usage

3.4.2.1 Start / stop UTMR service

¢Ƙƛǎ ƭƛōǊŀǊȅ ƛǎ ŘŜǎƛƎƴŜŘ ŀǎ ŀƴ ŀƴŘǊƻƛŘ ǎŜǊǾƛŎŜΦ Lǘ ǎƘƻǳƭŘ ōŜ ǎǘŀǊǘŜŘ ǿƛǘƘ ǘƘŜ άǎǘŀǊǘ{ŜǊǾƛŎŜέ

command.

import bonvoyage.service.UTMRService;

Intent intent = new Intent(MyActivity. this , UTMRService. class);

startService(intent);

The service should start.

It first tries to copy the recognition model on the smartphone memory, then loads the model and

starts listening to the available sensors of the smartphone.

If something goes wrong in the copying / loading files process, the service stops itself and sends

its status via broadcast.

¢ƘŜ ǎŜǊǾƛŎŜ ƛǎ ǎǘŀǊǘŜŘ ǿƛǘƘ ǘƘŜ ά{ǘŀǊǘψǎǘƛŎƪȅέ ŦƭŀƎ ǿƘƛŎƘ ƳŜŀƴǎ ǘƘŀǘ ƛŦ ǎƻƳŜǘƘƛƴƎ ǎǘƻǇǎ ŦƻǊ ŀƴȅ

reason other than it was asked to by the user, the service will try to start again.

To stop the service you should use the command stopService:

Intent intent = new Intent(MainActivity.this, UTMRService.class);

stopService(intent);

The INTENT_UTMR_SERVICE_RUNNING broadcast should warn you if the service has stopped

correctly or not. The Boolean should be set to false.

Start and stop service broadcast

Indeed, in order to know if the service has started correctly, you may want to listen to the

broadcast the service will send when entirely started or stopped.

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 30 of 89

To get notified of this broadcast you have to register an intent filter named

INTENT_UTMR_SERVICE_RUNNING.

The broadcast will send a Boolean under the name of INTENT_SERVICE_RUNNING which will be

set to true if the service has started correctly, false otherwise.

Adding the Activity name

The service can be still running even though the calling application has been stopped.

An icon on the notification bar indicates that the service is running. You can start again your

application by pressing the service notification icon if you pass your activity classname to the

intent when starting the service. The intent extra name is

INTENT_START_SERVICE_CLASSNAME.

3.4.2.2 The BVPreferences class

The UTMR Service uses parameters, which can be set using the public BVPreferences class.

As the BVPreferences class is recorded on the smartphone using the android shared preferences

mechanism, BVPreferences is used in a static way.

This class will help you set the desired classifier and filter. See the JavaDoc and the

UTMRTutoApp for more information.

Note:

- Only one classifier named V0401 is available in this release.

- 2 filters are available for this release: VOTE and HMM:

o Ψ±h¢9Ω ƛǎ ŀ ƳŀƧƻǊƛǘȅ ǾƻǘŜ ƻǾŜǊ ǘƘŜ ƭŀǎǘ ǇҐмл Ǌŀǿ ŎƭŀǎǎƛŦƛŎŀǘƛƻƴ ǊŜǎǳƭǘǎΦ ¢Ƙƛǎ ƛǎ ǘƘŜ

default value.

o ΨIaaΩ ƛǎ ŀ Ǉƻǎǘ ŎƭŀǎǎƛŦƛŎŀǘƛƻƴ ǘŜŎƘƴƛǉǳŜ ǳǎƛƴƎ ŀ ŘƛǎŎǊŜǘŜ ƘƛŘŘŜƴ ƳŀǊƪƻǾ ƳƻŘŜƭ

(DHMM). This option has not been yet tested and should not be use.

See the UTMRTutoApp for more information about how to set classifier and filter.

3.4.2.3 Communication with the service

Start/stop broadcast

See chapter about the starting and stopping of the service.

Classification Result

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 31 of 89

For the classifier named V0401 (the only one available in this release), there are 8 classes:

ΨǎǘƛƭƭΩΣ ΨǿŀƭƪΩΣ ΨǊǳƴΩΣ ΨōƛƪŜΩΣ ΨǊƻŀŘΩΣ ΨǊŀƛƭΩΣ ΨǇƭŀƴŜΩ ŀƴŘ ΨǳƴŘŜŦƛƴŜŘΩΦ

Road regroups transportation modes like car and bus.

Rail regroups transportation modes like tramway, train, subway.

¢ƘŜ Ŏƭŀǎǎ ΨǳƴŘŜŦƛƴŜŘΩ ƛǎ ǊŜǘǳǊƴŜŘ ǿƘŜƴ, for example, some sensor data are missing (e.g., the

accelerometer or the magnetometer is not running).

UTMR Service broadcast every classification result that is computed through the

INTENT_CHANGE_RESULT broadcast.

This broadcast contains the following information:

(long) INTENT_CHANGE_RESULT_NAME_START_TIME : is the UTC time at which the

service was started in msec.

(long) INTENT_CHANGE_RESULT_NAME_RESULT_TIME: is the time at which the

classification was computed

(String []) INTENT_CHANGE_RESULT_NAME_MODE_TYPE: is the array of the classes the

model uses.

The classification score is the posterior probability of being in one the different classes (8 in our

case). It is a vector whose sum equal to 1 (probability). The raw classification result (see function

below) is the maximum of these values.

(int) INTENT_CHANGE_RESULT_RESULT_VALUE: the index of the winning class before

the filtering.

(int) INTENT_CHANGE_RESULT_FILTER_VALUE : the index of the winning class after

the filtering.

You can check the associated JavaDoc about for more information about those constants.

3.4.3 ¦ǎŜǊΩǎ {ǘǊŜǎǎ [ŜǾŜƭ ό¦{[ύ [ƛōǊŀǊȅ LƴǘŜƎǊŀǘƛƻƴ

This library, by using data provided by the Empatica E4 watch (ppg, acceleration, EDA, skin

temperature), is able to estimate the stress level of the user. StressLevelService is started via the

Andorid startService command. Since the initialization may take some time or fail if the Empatica

watch is not responding, intermediate initialization status is sent via the Android Broadcast

mechanism. This manual is a concrete guide for integrating and using the RecoStressLib correctly.

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 32 of 89

RecoStressLib is a java/android library, which aims at recognizing user stress with the help of the

Empatica E4 watch.

3.4.3.1 Application manifest file

Service declaration

The usage of the service has to be declared in the main application manifest file.

<service android:name=" bv.leti.cea.recostresslib.StressDetectionService" />

Required Permissions

The main android application should have at least the following permissions:

¶ Read and write into external storage: recognition models have to be copied and read on

the smartphone memory.

¶ Access coarse or fine location. This is for BLE use.

¶ Data service since the phone needs to check for connection permission via a web service

to the E4 watch, having an internet connection is mandatory.

Note: not having granted those permissions may cause the application to crash.

The following lines have to be added to the manifest file :

<uses - permission android:name="android.permission.BLUETOOTH" /> < uses -

permission android:name="android.permission.BLUETOOTH_ADMIN" /> < uses -

permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" /> < uses -

permission android:name="android.permission.READ_EXTERNAL_STORAGE" /> < uses -

permission android:name="android.permission.INTERNET" /> < uses - permission

android:name="android.permission.ACCESS_COARSE_LOCATION" /> < uses - permission

android:name="android.permission.A CCESS_FINE_LOCATION" /> < uses - permission

android:name="android.permission.WAKE_LOCK" /> < uses - permission

android:name="android.permission.ACCESS_NETWORK_STATE" />

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 33 of 89

3.4.3.2 Project integration

This part explains how to integrate the lib in Android Studio. The άŜŎƻǎǘǊŜǎǎƭƛō-ǊŜƭŜŀǎŜΦŀŀǊέ ƴŜŜŘǎ

ǘƻ ōŜ ŎƻǇƛŜŘ ƛƴ ǘƘŜ ǇǊƻƧŜŎǘ ǎǘǊǳŎǘǳǊŜ ǳƴŘŜǊ ǘƘŜ άƭƛōǎέ ŦƻƭŘŜǊΦ ¢Ƙƛǎ ŦƻƭŘŜǊ ƛǎ ŀ ŎƘƛƭŘ ƻŦ ǘƘŜ άŀǇǇέ

ŦƻƭŘŜǊ ŀƴŘ ǎƛōƭƛƴƎ ƻŦ ǘƘŜ άǎǊŎέ ŦƻƭŘŜǊΦ ¢ƘŜ ŦƻƭƭƻǿƛƴƎ ƭƛƴŜǎ ƴŜŜŘ ǘƻ ōŜ ŀŘŘŜŘ ǘƻ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴ

gradle file:

repositories

{

 flatDir

 {

 dirs 'libs'

 }

}

dependencies

{

 compile(name: 'recostresslib - release' , ext : 'aar')

}

The USL library uses third party libraries, which need to be added in the project in the application

gradle file:

dependencies {

compile fileTree(dir : 'libs' , include : ['*.jar'])

compile 'com.android.support:appcompat - v7:YOUR_LOCAL_VERSION'

compile(name: 'recostresslib - release' , ext : 'aar')

compile 'nz.ac.waikato.cms.weka:weka - stable:3.6.13'

compile 'com.google.guava:guava:16.0.1'

compile 'com.squareup.okhttp:okhttp:2.5.0'

compile 'com.empatica.empalink:empalink:2.1@aar'

}

For an example of a complete app gradle file, please check the file distributed with
StressLibTutoApp sample project. The minimal Android SDK version is 19 (Android4.4).

3.4.4 USL Library Usage

3.4.4.1 Start/ Stop USL Service

¢Ƙƛǎ ƭƛōǊŀǊȅ ƛǎ ŘŜǎƛƎƴŜŘ ŀǎ ŀƴ ŀƴŘǊƻƛŘ ǎŜǊǾƛŎŜΦ Lǘ ǎƘƻǳƭŘ ōŜ ǎǘŀǊǘŜŘ ǿƛǘƘ ǘƘŜ άǎǘŀǊǘ{ŜǊǾƛŎŜέ

command.

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 34 of 89

import bv.leti.cea.recostresslib.StressDetectionService;

final Intent serviceIntent=new Intent(this,StressDetectionService.class);

//add Intent extras here

startService(serviceIntent);

The service tries to copy recognition model on the smartphone memory, then loads the model If

something goes wrong in the copying / loading files process, the service stops itself.

Raw measure as well as classification results and features are logged into a file under the

CEA/BV/Stress/Data folder.

¢ƘŜ ǎŜǊǾƛŎŜ ƛǎ ǎǘŀǊǘŜŘ ǿƛǘƘ ǘƘŜ ά{ǘŀǊǘψǎǘƛŎƪȅέ ŦƭŀƎ ǿƘƛŎƘ ƳŜŀƴǎ ǘƘŀǘ ƛŦ ǎƻƳŜǘƘƛƴƎ ǎǘƻǇǎ ŦƻǊ ŀƴȅ

reason other than it was asked to by the user, the service will try to start again.

To stop the service you should use the command stopService :

Intent intent = new Intent(Context c , StressDetectionService. class);

stopService(intent);

The STRESS_SERVICE_STATUS broadcast should warn you if the service has stopped correctly or

not. The Boolean should be set to false.

Empatica developer API Key

You need to send your Empatica API KEY number in order for Empatica to check if you are

authorized to connect to the available E4 watches. API_KEY is sent via Intent Extra before

starting the service.

import bv.leti.cea.recostresslib.StressServiceConstants; import

bv.leti.cea.recostresslib.StressDetectionService;

Intent serviceIntent= new Intent(Context c , StressDetect ionService. class);

serviceIntent.putExtra(StressServiceConstants. EMPATICA_API_KEY, MY_API_KEY);

startService(serviceIntent);

You can get your Empatica API_KEY on the Empatica web site, after purchasing an Empatica E4

watch and becoming a developer1. See more information at2.

1 http://developer.empatica.com/ (Libraries for Android and iOS are available)
2 https://www.empatica.com

http://developer.empatica.com/

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 35 of 89

3.4.4.2 Connecting to the Empatica E4 Device

Right after the StressDetectionService starts, it will be looking for an E4 watch to connect to. It is

required that the user presses its E4 button at this moment.

The Empatica library checks if the user, identified by the API_KEY, is allowed, or not, to connect

to the scanned Empatica device via a web service. If no Internet connection is available, this

connection will fail and throw an Exception, sometimes causing the service to crash.

If the E4 was already started, it is possible that the connection process does not success,

especially if the E4 was already working in logging mode. If this occurs, user should stop the

watch and the service and start the process over again.

3.4.4.3 Communication with the service

In order to know if the service has started correctly, you need to listen the broadcast the service

will send when entirely started.

The broadcast Action Name is STRESS_SERVICE_STATUS.

It has 4 parameters, which are all Booleans:

- STRESS_SERVICE_IS_RUNNING: is set to true if the service is running.

- STRESS_CLASSIFIER_IS_LOADED: is set to true if the classifier s loaded and ready

to be used.

- STRESS_SENSOR_IS_CONNECTED: is set to true if the E4 sensor is connected

- STRESS_SERVICE_IS_PROCESSING: is set to true if the bufferization and

classification process has started.

This broadcast is sent every time one of this parameters value changes.

Classification Result broadcast

Stress Detection Service broadcasts every classification result that is computed through the

STRESS_SERVICE_RESULT intent.

The parameter called STRESS_SERVICE_RESULT_NAME_RESULT is float between 0 and 1 where 0

is the minimal stress note and 1 the maximum.

More parameters are sent with this broadcast, you can find more information about them in the

JavaDoc and the DemoStressTutoApp sample project.

IBI Measure received broadcast

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 36 of 89

See the STRESS_SERVICE_MEASURE_IBI constant in the JavaDoc for information about how to

use this broadcast. IBI stands for Inter Beat Interval and is the base information on which heart

rate can be computed by dividing 60 by this value.

EDA Measure received broadcast

See the STRESS_SERVICE_MEASURE_EDA constant in the Javadoc. EDA stands for electro dermic

answer. It is also known as Galvanic Skin Response.

Binder

You can also bind to the service to get its current status via the Android binding process. The

binder class name is StressDetectionService.SDServiceBinder.

The service gives access to 3 functions to know the service status:

Boolean getClassifierStatus()

Boolean getProcessStatus()

Boolean getSensorStatus()

3.5 Car Pooling

3.5.1 Description

The APIs exposed by the Car Pooling service allow managing the interaction between different

users that want to offer and search rides in Europe. The service allows offering a ride, searching a

ride in a specific area satisfying specific needs and booking a ride in order to reserve the

requested number of seats. Finally, users can delete the requests and ride offers at every

moment.

3.5.2 API

Add a new ride

URL http://82.223.67.189/carpoolingbe/OfferRide

HTTP Request

Type

POST

Input Data: Ride object (JSON)

http://82.223.67.189/carpoolingbe/OfferRide

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 37 of 89

Get rides offered by the user

URL http://82.223.67.189/carpoolingbe/OfferRide

HTTP Request

Type

GET

Input Data: userID (INTEGER)

Output Data: Rides offered by the user (JSON)

Communication

protocol

HTTP/JSON

Get rides offered in a specific area

URL http://82.223.67.189/carpoolingbe/OfferRide

HTTP Request

Type

GET

Input Data: latStart/lonStart/latEnd/lonEnd (DOUBLE)

Output Data: Rides offered in a specific area (JSON)

Communication

protocol

HTTP/JSON

Delete a ride offered by the user

URL http://82.223.67.189/carpoolingbe/OfferRide

HTTP Request

Type

DELETE

Input Data: transferID (INTEGER)

Output Data: ack (BOOLEAN)

Output Data: transferID (INTEGER)

Communication

protocol

HTTP/JSON

http://82.223.67.189/carpoolingbe/OfferRide
http://82.223.67.189/carpoolingbe/OfferRide
http://82.223.67.189/carpoolingbe/OfferRide

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 38 of 89

Communication

protocol

HTTP/JSON

Post a search ride request

URL http://82.223.67.189/carpoolingbe/SearchRide

HTTP Request

Type

POST

Input Data: Ride object (JSON)

Output Data: List of solution objects (JSON)

Communication

protocol

HTTP/JSON

Get solutions for a specific user request

URL http://82.223.67.189/carpoolingbe/SearchRide

HTTP Request

Type

GET

Input Data: userID/transferID (INTEGERS)

Output Data: List of solution objects (JSON)

Communication

protocol

HTTP/JSON

Book a ride

URL http://82.223.67.189/carpoolingbe/BookRide

HTTP Request

Type

POST

Input Data: solutionID (INTEGER)

Output Data: poolID (INTEGER)

Communication

protocol

HTTP/JSON

http://82.223.67.189/carpoolingbe/SearchRide
http://82.223.67.189/carpoolingbe/SearchRide
http://82.223.67.189/carpoolingbe/BookRide

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 39 of 89

Get booked rides

URL http://82.223.67.189/carpoolingbe/BookRide

HTTP Request

Type

GET

Input Data: userID (INTEGER)

Output Data: List of solution objects (JSON)

Communication

protocol

HTTP/JSON

Delete ride reservation

URL http://82.223.67.189/carpoolingbe/BookRide

HTTP Request

Type

DELETE

Input Data: userID /solutionID (INTEGERS)

Output Data: ack (BOOLEAN)

Communication

protocol

HTTP/JSON

3.5.3 Data formats

Ride object: JSON schema

{

 "driver_id" : "Integer representing the user identifier",

 "pool_id" : "Integer value representing the identifier of the pool. If

the ride is not aggregated yet, the default value is - 1",

 "dep_addr" : "Text repres enting the departure address",

 "arr_addr" : "Text representing the destination address",

 "dep_gps" : {

 "latitude" : "Double precision value representing the latitude of

the departure address",

 "longitude" : "Double precision value representing the longitudeof

the departure address"

 },

 "arr_gps" : {

 "latitude" : "Double precision value representing the latitude of

the destination address",

http://82.223.67.189/carpoolingbe/BookRide
http://82.223.67.189/carpoolingbe/BookRide

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 40 of 89

 "longitude" : "Double precision value representing the longitudeof

the destination address"

 },

 "dep_time " : "Timestamp representing the departure time",

 "occupied_seats" : "Integer representing the number of available seats if

user_role='driver' or the number of requested seats if

user_role='passenger' ",

 "available_seats" : "Integer represe nting the number of available seats

if user_role='driver' or the number of requested seats if

user_role='passenger' ",

 "special_needs" : {

"animal" : "Boolean value representing the request/availability

(accordingly with the user_role) to get an animal on the vehicle",

"handicap" : "Boolean value representing the request/availability

(accordingly with the user_role) to accomodate people with handicap

on the vehicle",

"smoke" : "Boolean value representing the request/availability

(accordingly with the user_ role) to accomodate smokers on the

vehicle",

"luggage" : "Boolean value representing the request/availability

(accordingly with the user_role) to get a luggage on the vehicle"

 },

 "status" : "Enum value representing the status of the ride. Accepted

values are: 'planned', 'ongoing','closed' ",

 "total_distance" : "dist",

 "total_duration" : "dur",

 "total_cost" : "cost",

 "passengers" : [{

 "user_id" : "user_id",

 "transfer_id" : "t",

 "quantity" : 1,

 "from" : "f",

 "to" : "t"

 }, {

1.1.1.1. "user_id" : "user_id",

 "transfer_id" : "t",

 "quantity" : 1,

 "from" : "f",

 "to" : "t"

 }

],

 "path" : [{

"latitude" : "Double precision value representing the

latitude of the first point of the path crossed by the

driver",

"longitude" : "Double precisi on value representing the

longitude of the first point of the path crossed by the

driver",

"touchTime" : "Timestamp representing the time when it is

supposed that the node is crossed by the driver"

 }, {

"latitude" : "Double precision value representing t he

latitude of the second point of the path crossed by the

driver",

"longitude" : "Double precision value representing the

longitude of the second point of the path crossed by the

driver",

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 41 of 89

"touchTime" : "Timestamp representing the time when it is

supposed that the node is crossed by the driver"

 }, {

"latitude" : "Double precision value representing the

latitude of the last point of the path crossed by the

driver",

"longitude" : "Double precision value representing the

longitude of the last point of the path crossed by the

driver",

"touchTime" : "Timestamp representing the time when it is

supposed that the node is crossed by the driver"

 }

]

}

Ride object: examples

Figure 7 Ride examples: Blue line represents the path of a driver, yellow and green dashed line represent

ǇŀǎǎŜƴƎŜǊΩǎ ǊŜǉǳŜǎǘǎ

The following JSON represents the ride object posted by the driver (blue line in Figure 7) to offer

the ride:

{

 "user_id": 89,

 "pool_id": 0,

 "user_role": "driver"

 "dep_addr": "A",

 "arr_addr": "I",

 "dep_gps": {

 "latitude": latitude(A),

 "longitude": longitude(A)

 },

 "arr_gps": {

"latitude": latitude(I),

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 42 of 89

 "longitude": longitude(I)

 },

 "dep_time": 10,

 "seats": 3,

 "special_needs": {

 "animal": true,

 "handicap": true,

 "smoke": true,

 "luggage": true

 },

 "status": "planned",

 "cost": 0.35,

 "det_range": 300.0,

 "ride_details": "Tesla model S",

 "path": [

 {

"latitude": latitude(A),

 "longitude": longitude(A)

 "touchTime": 10

 },

 {

"latitude": latitude(B),

 "longitude": longitude(B)

 "touchTime": 20

 },

 {

 "latitude": latitude(D),

 "longitude": longitude(D)

 "touchTime": 30

 },

 {

 "latitude": latitude(E),

 "longitude": longitude(E)

 "touchTime": 40

 },

 {

 "latitude": latitude(G),

 "longitude": longitude(G)

 "touchTime": 50

 },

 {

 "latitude": latitude(I),

 "longitude": longitude(I)

 "touchTime": 60

 }

]

}

The following two JSON objects represent the ride objects posted by the passenger to add the

ride request (yellow and green line in Figure 7).

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 43 of 89

{

 "user_id": 12,

 "pool_id": 0,

 "user_role": "passenger"

 "dep_addr": "C",

 "arr_addr": "H",

 "dep_gps": {

 "latitude": latitude(C),

 "longitude": longitude(C)

 },

 "arr_gps": {

"latitude": latitude(H),

 "longitude": longitude(H)

 },

 "dep_time": 25,

 "seats": 2,

 "special_needs": {

 "animal": false,

 "handicap": false,

 "smoke": false,

 "luggage": true

 },

 "status": "planned",

 "cost": 0.40,

 "det_range": 400.0,

 "ride_details": "from station to home",

 "path": [

]

}

{

 "user_id": 34,

 "pool_id": 0,

 "user_role": "passenger"

 "dep_addr": "F",

 "arr_addr": "I",

 "dep_gps": {

 "latitude": latitude(F),

 "longitude": longitude(F)

 },

 "arr_gps": {

"latitude": latitude(I),

 "longitude": longitude(I)

 },

 "dep_time": 45,

 "seats": 1,

 "special_needs": {

 "animal": false,

 "handicap": false,

 "smoke": false,

 "luggage": false

 },

 "status": "planned",

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 44 of 89

 "cost": 0.40,

 "det_range": 200.0,

 "ride_details": "from home to work",

 "path": [

]

}

Solution object: JSON schema

{

 "driver_id":"Integer representing the user identifier",

 "pool_id":"Integer value representing the identifier of the pool. If the ride

is not aggregated yet, the default value is - 1",

 "dep_addr":"Text representing the departure address",

 "arr_addr":"Text representing the destination address",

 "dep_gps": {

 "latitude":"Double precision value representing the latitude of the

departure address",

 "longitude":"Double precision value representing the longitudeof the

departure address"

 },

 "arr_gps": {

 "latitude":"Double precision value representing the latitude of the

destination address",

 "longitude":"Double precision value representing the longitudeof the

destination address"

 },

 "dep_time":"Timestamp representing the departure time",

 "occupi ed_seats":"Integer representing the number of available seats if

user_role='driver' or the number of requested seats if user_role='passenger'",

 "available_seats":"Integer representing the number of available seats if

user_role='driver' or the number of re quested seats if user_role='passenger'",

 "special_needs": {

 "animal":"Boolean value representing the request/availability (accordingly

with the user_role) to get an animal on the vehicle",

 "handicap":"Boolean value representing the request/availabil ity (accordingly

with the user_role) to accomodate people with handicap on the vehicle",

 "smoke":"Boolean value representing the request/availability (accordingly

with the user_role) to accomodate smokers on the vehicle",

 "luggage":"Boolean value rep resenting the request/availability (accordingly

with the user_role) to get a luggage on the vehicle"

 },

 "status":"Enum value representing the status of the ride. Accepted values are:

'planned', 'ongoing','closed'",

 "total_distance":"Double precision representing the total distance of the path

in meters",

 "total_duration":"Double precision representing the total duration of the path

in seconds",

 "total_cost":"Double precision representing the total cost of the path

(euros/scores)",

 "passengers": [

 {

 "user_id":"Integer representing the user identifier",

 "transfer_id":"Integer value representing the ride identifier",

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 45 of 89

 "quantity":"integer value representing the number of seats occupied by the

ride in dentifyied by transfer_id",

 "from":"Text value representing the departure address",

 "to":"Text value representing the arrival address",

 "routes": [

 {

 "geometryGeoJson": {

 "type":"Feature",

 "geometry": {

 "type":"LineString",

 "coordinates": [

 [

 "Double precision value representing the longitude of the

first node crossed by the user_id",

 "Double precision value representing the lati tudeof the first

node crossed by the user_id",

 "timestamp representing the time when the user_id visits the

first node"

],

 [

 "Double precision value representing the longitude of the

second node crossed by the user_id",

 "Double precision value representing the latitudeof the second

node crossed by the user_id",

 "timestamp representing the time when the user_id visits the

second node"

],

 [

 "Double precision value representing the longitude of the last

node crossed by the user_id",

 "Double precision value representing the latitudeof the last

node crossed by the user_id",

 "timestam p representing the time when the user_id visits the

last node"

]

]

 },

 "durationSeconds":"Double precision representing the

duration(seconds)of the path covered by the user_id",

 "lengthMeters": "Double precision representing the distance(meters)of

the path covered by the user_id",

 "cost":"Double precision value representing the cost of the path

covered by the user_id",

 "segments": [

 {

 "nr": 1,

 "durationSeconds":"Double precision representing the

duration(seconds)of the segment covered by the user_id",

 "lengthMeters":"Double precision representing the

distance(meters)of the segment covered by the user_id",

 "cost":"Double precision value representing the cost of the

segment covered by the user_id",

 "modeOfTransport": {

 "generalizedType":"CAR_POOLING"

 },

 "from": {

 "coordinate": {

 "type":"Feature",

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 46 of 89

 "geometry": {

 "type":"Point",

 "coordinates": [

 "Double precision value representing the longitude of

th e departure address",

 "Double precision value representing the latitude of the

departure address"

]

 }

 }

 },

 "to": {

 "coordinat e": {

 "type":"Feature",

 "geometry": {

 "type":"Point",

 "coordinates": [

 "Double precision value representing the longitude of

the arrival address",

 "Double precision value representing the latitude of the

arrival address"

]

 }

 }

 }

 }

]

 }

 }

]

 }

]

}

Solution object: example

Figure 8 Solution object example: blue line represents the path of the driver that picks the first passenger up in

node C (yellow line), then drives to node F to pick also the second passenger up (green line). Then the three users

go to node H to leave the first passenger and finally the driver and the second passenger go to destination node I.

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 47 of 89

The JSON object able to represent the solution discussed in Figure 8 contains the information

about the driver and three passenger entities, each one containing the information about the

route that the user will share.

3.5.4 Usage

The APIs exposed by the Car Pooling service will allow BONVOYAGE to explore and add

innovative travel alternatives that include car-pooling as a standard transport service. In

particular, the application will use the POST service to attach a new Car Pooling ride offer to an

itinerary (among the alternatives returned by the Orchestrator) that included a path by car,

whenever the user is willing to do so. The user can also manage his/her ride offers deleting them

and obviously search for a ride among the offers. When an ƻŦŦŜǊŜŘ ǊƛŘŜ ƳŀǘŎƘŜǎ ǿƛǘƘ ǘƘŜ ǳǎŜǊΩǎ

preferences, the user can book the ride.

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 48 of 89

4 Internal Services at the Orchestrator Layer

¢Ƙƛǎ ǎŜŎǘƛƻƴ ǇǊŜǎŜƴǘǎ ǘƘŜ ƛƴǘŜǊŦŀŎŜǎΩ ŘŜǘŀƛƭǎ ƻŦ ǘƘŜ .hb±h¸!D9 Orchestrator component, which

can be used by external stakeholders to easily develop powerful inter-modal and multi-modal

travel applications, by offering a routing service. The real-time intermodal routing service, i.e. the

API exported by the Orchestrator to the Application Server, is presented in Section 4.1. It

includes a description of the GetRoutes API and the SPROUTE data format, which is actually used

for route requests and responses throughout the entire project.

4.1 Real-time intermodal routing service

4.1.1 Description

The routing service provides a route planning service for goods and persons. It implements a set

of personalisation functionalities providing router recommendations optimised for the individual

settings and preferences of the user. The Orchestrator handles routing request from the

Application Server. The BONVOYAGE implements a distributed, decomposition approach for the

routing request. A federated community of Soloists is used to calculate one or more personalised

routes for the request. The details of the approach are described in Deliverable 4.1 Design of the

Intelligent Transport Functionality and Deliverable 5.1 Design of the adaptation functionality. The

data format for route requests and response is SPROUTE3. Adaptations and extensions have been

applied to the format, in order to support the full functionality of the BONVOYAGE platform.

These backwards backwards-compatible changes are described in detail in Deliverable 5.1 Design

of the adaptation functionality.

The Orchestrator is implemented as a web service allowing HTTP POST requests. At input, the

route request is sent as JSON in SPROUTE format. The User-ID is set within the request as HTTP-

Header parameter. The response contains the route alternatives as JSON in SPROUTE format.

4.1.2 API

GETROUTES
URL http://bonvoyage.sintef.no/Routing/json/GetRoutes

Input Data: Route alternatives (SPROUTE FORMAT)
USER-ID (FIREBASE TOKEN)

Output Data: Route alternatives (SPROUTE FORMAT)

3 https://github.com/dts-ait/ariadne-json-route-format

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 49 of 89

Communication
protocol

POST HTTP/JSON

4.1.3 Data formats

The SPROUTE data format is used by the BONVOYAGE routing service. The base format is

specified atError! Bookmark not defined., while its adaptation and extensions for BONVOYAGE are s

pecified in Deliverable 5.1 Design of the adaptation functionality. The following Figure 8 shows

the structure and the concepts of the format.

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 50 of 89

Figure 9 Structure and concepts of the SPROUTE format

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 51 of 89

The following example shows the JSON schema of the request specifying departure and target

location (including optional άvia pointsέ). Note that, locations have to be defined using

geographic coordinates. Therefore, an external geocoding service (or functionalities of the

mobile operating system e.g. google services) has to be used in order to enable the users to

enter addresses rather than only directly or indirectly specifying coordinates (e.g. current

position, location picked from a map etc.)

Additionally, constrains for the route can be set such as time and mode of transport.

 "RoutingRequest": {

 "javaType": "sproute.RoutingRequest",

 "type": "object",

 "properties": {

 "departureTime": {

 "type": "string"

 },

 "accessibilityRestrictions": {

 "type": "array",

 "items": {

 "$ref":

"#/definitions/AccessibilityRestriction"

 }

 },

 "maximumPublicTransportRoutes": {

 "type": "integer"

 },

 "acceptedDelayMinutes": {

 "type": "intege r"

 },

 "modesOfTransport": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Modality"

 }

 },

 "language": {

 "type": "string"

 },

 "optimizedFor": {

 "type": "string"

 },

 "excludedPublicTransport": {

 "type": "array",

 "items": {

 "$ref":

"#/definitions/PublicTransportVehicles"

 }

 },

 "arrivalTime": {

 "type": "string"

 },

 "additionalInfo": {

 "$ref": "#/definitions/AdditionalInfo"

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 52 of 89

 },

 "maximumTransfers": {

 "type": "integer"

 },

 "from": {

 "$ref": "#/definitions/LocationConstraint"

 },

 "via": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/LocationConstraint"

 }

 },

 "to": {

 "$ref": "#/definitions/LocationConstraint"

 },

 "serviceId": {

 "type": "string"

 },

 "privateVehicleLocations": {

 "type": "object",

 "additionalProperties": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Location"

 }

 }

 },

 "travellingEntities": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/TravellingEntity"

 }

 },

 "currentRoute": {

 "$ref": "#/definitions/Route"

 },

 "segmentConstraints": {

 "description": "Constraints applying to segments.

If segment constraints are provided, the number of segment constraints must

always be the amount of via points + 1",

 "type": "array",

 "items": {

 "$ref": "#/definitions/SegmentConstraint"

 }

 }

 },

 "required": [

 "modesOfTransport",

 "from",

 "to",

 "serviceId"

]

 }

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 53 of 89

4.1.4 Usage

The following example shows the excerpt of a route response. It shows the first to legs of the

ǊƻǳǘŜ ǿƛǘƘ ǘƘŜ ƛŘ άпέΦ ¢ƘŜ ǊƻǳǘŜ ōŜƎƛƴǎ ǿƛǘƘ ŀ ƧƻǳǊƴŜȅ ƻƴ Ŧƻƻǘ ŦƻǊ ǘƘŜ ǎǘŀǊǘƛƴƎ Ǉƻƛƴǘ ά/9!έ ǘƻ ǘƘŜ

ǘǊŀƛƴ ǎǘŀǘƛƻƴ άDŀǊŜ ŘŜ DǊŜƴƻōƭŜέΦ CǊƻƳ ǘƘŜǊŜ ŀ ǘǊŀƛƴ ƛǎ ǘŀƪŜƴ ǘƻ άDŀǊŜ ŘŜ [ȅƻƴ {ŀƛƴǘ-9ȄǳǇŜǊȅέΦ

The route contains information about duration, distance and the mode of transport.

 é

 "id": "4",

 "distanceMeters": 1101606,

 "segments": [

 {

 "accessibility": null,

 "additionalInfo": null,

 "alightingSeconds": 0,

 "endTime": "2016 - 12- 05T15 :05:00.0000000+01:00",

 "boardingSeconds": 0,

 "boundingBox": null,

 "costs": null,

 "startTime": "2016 - 12- 05T14:53:35.5920000+01:00",

 "durationSeconds": 684,

 "from": {

 "additionalInfo": null,

 "address": {

 "streetName" : "CEA"

 },

 "coordinate": {

 "geometry": {

 "coordinates": [

 5.7080675287106395,

 45.19517455763722

],

 "type": "Point"

 },

 "properties": {},

 "type": "Feature"

 }

 },

 "geometryEncodedPolyLine":

"ydzrGmzya@N}D??fAmB??lAuB??DK??AC??i@o@??c@Y??BU??BS??@E??B_@??@E???E??@K??@K?

??I???E??BY??FK??JG??nCaA??XK??XK??~@]??JE??JE??lAc@??JE??`Bo@??tAg@??CQ??OmA??

?M??FK??h@Q??NG??FC??PG??AW???A??JE???C??C@???C??Ge@??AA??DC??@A??JE??D???|By@?

?bA_@??D@??DC??BA??DG??HC??AE",

 "geometryGeoJson": null,

 "geometryGeoJsonEdges": null,

 "intermediateStops": null,

 "distanceMeters": 953,

 "modeOfTransport": {

 "acces sibility": null,

 "additionalInfo": null,

 "detailedType": "FOOT",

 "generalizedType": "FOOT",

 "id": null,

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 54 of 89

 "operator": null,

 "service": null,

 "sharingType": ""

 },

 "navigationInstructions": null,

 "nr": 1,

 "to": {

 "additionalInfo": null,

 "address": {

 "streetName" : "Gare de Grenoble"

 },

 "coordinate": {

 "geometry": {

 "coordinates": [

 5.71462,

 45.19011

],

 "type": "Point"

 },

 "properties": {},

 "type": "Feature"

 }

 }

 },

 {

 "accessibility": null,

 "additionalInfo": null,

 "alightingSeconds" : 0,

 "endTime": "2016 - 12- 05T15:31:00.0000000+01:00",

 "boardingSeconds": 0,

 "boundingBox": null,

 "costs": null,

 "startTime": "2016 - 12- 05T15:07:00.0000000+01:00",

 "durationSeconds": 1440,

 "from": {

 "additionalInfo": null,

 "address": {

 "streetName" : "Gare de Grenoble"

 },

 "coordinate": {

 "geometry": {

 "coordinates": [

 5.71462,

 45.19011

],

 "type": "Point"

 },

 "properties": {},

 "type": "Feature"

 }

 },

 "geometryEncodedPolyLine": "eeyrGkc{a@cufBjw{B",

 "geometryGeoJson": null,

 "geometryGeoJsonEdges": null,

 "intermediateStops": null,

 "d istanceMeters": 77316,

 "modeOfTransport": {

 "accessibility": null,

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 55 of 89

 "additionalInfo": null,

 "detailedType": "RAILWAY",

 "generalizedType": "PU BLIC_TRANSPORT",

 "id": "MISSING_ID",

 "operator": null,

 "service": null,

 "sharingType": "RIDE_SHARING"

 },

 "navigationInst ructions": null,

 "nr": 2,

 "to": {

 "additionalInfo": null,

 "address": {

 "streetName" : "Gare de Lyon Saint - Exupery"

 },

 "coordinate": {

 "geometry": {

 "coordinates": [

 5.075841,

 45.721006

],

 "type": "Point"

 },

 "properties": {},

 "type": "Feature"

 }

 }

 },

é

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 56 of 89

5 Internal Services at the Infrastructure Layer

¢Ƙƛǎ ǎŜŎǘƛƻƴ ǇǊŜǎŜƴǘǎ ǘƘŜ ƛƴǘŜǊŦŀŎŜǎΩ ŘŜǘŀƛƭǎ ƻŦ ǘƘŜ .hb±h¸!D9 Infrastructure Layer components

that provide public APIs to external stakeholders. The Soloist routing service is introduced in

Section 5.1. The Publish and Subscribe services based on Internames and an example usage both

in BONVOYAGE as well as in other contexts is discussed in Section 5.2.

The functionality provided by OGB is described in Section 5.3 (when using the provided JAVA

interface). OGB also provides HTTP interfaces as described in Section 5.3.3.

5.1 Soloist routing service

Between Orchestrator and Soloists there exists a GetRoutes API exactly mirroring the

functionality of the GetRoutes we presented in 4.1, but mediated through an extended

SPROUTE, due to the fact that we need to specify in more details the start and end constraints of

the sub-route calculated by an individual Soloist. We also allow the Orchestrator to request

"many-to-many" routes from a Soloist as well as allowing the 'from' and 'to' to be specified as

polygons and not only coordinates. These extensions are on-going work and will be documented

in upcoming deliverable D5.2.

5.2 Publish ς Subscribe

5.2.1 Description

The BONVOYAGE Communication System was designed in order to support both request-

response and publish-subscribe communication schemes. These services are offered to users (for

instance soloists willing to receive updates about real-time travel data) through simplified APIs.

This section focuses on publish-subscribe services and provides a technical description of the API.

Figure 10 depicts our reference scenario. It integrates a Data Producer (for instance, a bus

operator in Rome), a Data Consumer (which can be either private, e.g. a single user or tour

operator, or a soloist software used for journey planning) and the communication network based

on Internames [see Deliverable D3.1]. In general, the publish-subscribe communication scheme

(also referred to as topic-based communication scheme) can be used for asynchronous data

dissemination. It is extremely useful whenever it is difficult to synchronize the generation of

requests at the Data Consumer side, mainly when dealing with real-time contents. In these

contexts, in fact, synchronous interactions may generate issues. For instance, the user may lose

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 57 of 89

intermediate updates of a given data or may retrieve the same version of the content. Another

major problem is related to the possible increment of number of messages exchanged in the

network. In fact, the Data Consumer may request the same copy of the content even if it the

information did not change. When the asynchronous approach is used, instead, as a first step the

Data Consumer issues a subscription request for a given content of interest. Then, every time a

new content is generated, the Data Producer has to notify the presence of a new content to all

subscribed Data Consumers, allowing them to retrieve updated version of real-time contents.

Figure 10 Publish-subscribe reference architecture

In Internames each piece of content is identified through a unique name, for instance

άLƴŦƻψ.¦{ψƻŦψwƻƳŜέ ƛƴ ǘƘŜ ŀōƻǾŜ example. When using the publish-subscribe model

implemented by our BONVOYAGE Communication System, content names serve the purpose of

άǘƻǇƛŎ ŎƘŀƴƴŜƭǎέ ŦƻǊ ǘƘŜ Ǉǳōκǎǳō ŀǊŎƘƛǘŜŎǘǳǊŜ ŀƴŘ ǘƘŜȅ ƛŘŜƴǘƛŦȅ ǘƘŜ ǘƻǇƛŎ ǳƴŘŜǊ ǿƘƛŎƘ ǳǇŘŀǘŜǎ

are to be regularly published.

Data Consumer and Data Producer do not interact directly with Internames. They, instead,

establish a connection with dedicated nodes (Consumer Proxy and Producer Proxy, respectively)

that act as an interface between the users of the BONVOYAGE system and the underlying

network infrastructure.

Data Consumer and Data Producer are implemented by importing a Java library that offers the

relevant APIs. Publishing APIs at the Data Produces side are: publish_init and

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 58 of 89

publish_update . Specifically, publish_init is used to publish the initial content of a

generally dynamic publication. It accepts the name of the publication and the publication itself,

returning true is the publishing was well done, or false if something went wrong.

publish_update is used to publish an update of existing publication, it accepts the name of

the publication and the new publication, returning true if the publishing was well done, or false if

something went wrong. It is important to remark that data are locally stored at the producer side

(this operation is transparent for the end user, as it is implemented by the APIs). Furthermore,

both APIs must be called sequentially every time the content is generated, to properly trigger the

notification process. Therefore, when the websocket connection between Data Producer and

Producer Proxy is closed, data will be no more available in the entire system. However, if in-

network caching is enabled in the intermediate border routers, a local copy of data can be

temporarily available for Data Consumers, even if the Data Producer is not connected.

The Subscriber uses the subscribe API of the library at the Data Consumer side.

Now, by focusing the attention on the whole Data Consumer, Data Producer, Consumer Proxy,

and Producer Proxy architecture, the following depicts the typical flow of operations:

Data Producer initiates a websocket connection with the Producer Proxy;

 Data Producer produces a publication message (via publish_init or pubish_update)

announcing the availability of real-time data to the Producer Proxy and becomes a source

for these data, till the websocket connection is closed. According to what previously

described, announced data refer to one or more name/topic. For each name/topic, two

contents must be available: initial contents (namely INIT) and updated contents (namely

UPDATE). Initial contents are those that need to be delivered to the consumer as soon it

joins the platform. Update contents include, instead, any modification to data currently

produced by the Data Producer.

 Once the Producer Proxy receives a publication message, it announces the availability of

the (new version of the) content to the BONVOYAGE Communication System;

 Data Consumer initiates a WebSocket connection with the Consumer Proxy;

 Data Consumer communicates to the Consumer Proxy its interest to collect real-time data

belonging to a set of names/topics. The list of names/topics was obtained by the Data

Consumer somewhere else, for instance via discovery procedures done by querying the

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 59 of 89

OGB Discovery Service. It uses the subscribe API, which receives as input the list of

names/topics and triggers the subscription process developed by the Consumer Proxy.

 Once the Consumer Proxy receives the list of names sent by the consumer, it retrieves

the corresponding initial contents and makes a subscription request to the BONVOYAGE

Communication System (through which it will be able to receive future updates).

5.2.2 API

Publish-subscribe services are exposed to end users by means of three Java APIs, which are

publish_init , publish_update and subscribe .

publish_init (name, content)

End-point it.telematics.isl.Producer Java class
Input Data: name: the name of the content to be published

content: the content to be published

Output Data: True if content is successfully announced to the Producer Proxy

Communication
protocol

Direct method call of a Java library

publish_update (name, content)

End-point it.telematics.isl.Producer Java class

Input Data: name: the name of the content to be published
content: the content to be published

Output Data: True if content is successfully announced to the Producer Proxy

Communication
protocol

Direct method call of a Java library

subscribe (namelist, handler)

End-point it.telematics.isl.Consumer Java class

Input Data: namelist: List of names or a single name string.
handler: Object of class that implements MessageHandler interface. Is
used to retrieve matching contents

Output Data: True if list of name or single name is successfully sent to the Consumer
Proxy

Communication
protocol

Direct method call of a Java library

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 60 of 89

5.2.3 Data formats

Data Consumers and Data Producers exchange JSON messages with proxies of the Internames

infrastructure. A total of three fields compose each message (see Figure 11):

1. Header. It contains general information about the message (e.g., the name of the

publication the message is carrying). This part of the message is mandatory in order to

disambiguate communications and properly address the message to the

user/consumer/application which asked for it;

2. Type. This field specifies the type of message (which can either contain logging

information or data). It provides information about the usage of the retrieved data.

3. Content. In it, the real content of the message is communicated.

Figure 11 JSON message structure used in the BONVOYAGE Communication System

Usage of this format, together with the JSON data notation, represents an optimal solution for

message exchange between network nodes to grant efficient asynchronous and decoupled

communications. First, JSON data format lowers the overhead connected to processing activities,

which are mandatory to elaborate XML files. Furthermore, messages can be of different nature

and the core network does not discriminate between them: control information and data

messages dispatched do not imply any differences in delivery throughout the network.

5.2.4 Usage

Publishing

An example code that depicts the behavior of the designed APIs is provided in what follows.

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 61 of 89

It is assumed that a producer generates contents under the name/topic bv/nametest. These

example contents include a timestamp and a random number in the range [0-100]. The

dedicated ProducerExample class is used for creating the Producer. Every time a new

content is generated, the pair <timestamp, random_number> is stored within the

updated content in a JSON object (see lines 6-10). The latest 3 generated contents, instead, are

always stored within the initial content. To this end, every time a new content is generated, both

INIT and UPDATE contents are generated and announced to the system through the

publish_init and publish_update APIs. In the provided example, the updates and the

related announcements are scheduled for periodic execution with one second pacing.

1: import it . telematics . isl . Producer . Producer;

2: public class ProducerExample {

3: public static void main (String [] args) {

4: String _defWebsocketServer =

"ws://telematics.poliba.it:8888/internames";

5: new Producer (_defWebsocketServer);

6: JsonArrayBuilder initArray = Json . createArrayBuilder ();

7: initArray . add (Json . createObjectBuilder ()

8: . add ("timestamp" , System . currentTimeMillis ())

9: . add ("number" , ThreadLocalRandom . current ()

10: . nextInt (minNumber , maxNumber + 1)));

11: JsonObject initContent = Json . createObjectBuilder ()

12: . add ("data" , initArray). build ();

13: try {

14: Producer . publish_init ("/nametest" , initContent . toString ());

15: Producer . publish_update ("/nametest" ,

initContent . toString ());

16: } catch (IOException e1) {

17: e1. printStackTrace ();

18: }

19: executor = Executors . newScheduledThreadPool (2);

20: executor . scheduleAtFixedRate(

21: new updateContent ("/nametest"), 0, 1, TimeUnit . SECONDS);

Subscribing

We provide here a more realistic example of how a Consumer can be created for receiving real-

time updates from the Norway NPRA server, which is a Producer of periodic DatexII information

about roads in the whole Norway country. For a detailed explanation of this architecture, please

see D5.1. Here we will focus on the more technical aspects of the API usage.

In the BONVOYAGE Communication System, we have designed an ad-hoc namespace where each

piece of travel centric content is identified through a unique name. It is designed according to a

hierarchical and geo-referenced structure [see also Deliverable D5.1], that is:

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 62 of 89

 [NAME] = /bv/[coords]/GPS-ID/[std]/[provider]/[service]/[é other fields é]

where: (i) [coords] provides GPS coordinates of the geographical area which the content refers

to, (ii) [std] field is related to the file format used by the Data Producer to deliver data (e.g.,

datexii), (iii) [provider] indicates who is providing the information, (iii) [service] field identifies the

specific service the files is related to. We say that the name is geo-referenced because the

[coords] field is filled with a selected geographical area. Starting from the GPS coordinates, in

fact, a specific area of approx. 1 km x 1 km is selected. For example, with reference to

coordinates (61.56, 8.43) the area is defined with latitude ranging from 61.56 to 61.57 and

longitude ranging from 8.43 to 8.44. Thus a geographical area can be described by a set of tiles

(see Figure 12), each one identified by a unique name.

Figure 12 A set of tiles for a geographical area

It is assumed that the user wants to get DatexII contents within an area of interest identified by

the two GPS points (expressed in decimal notation):

¶ Longitude 6, latitude 63,

¶ Longitude 12, latitude 58,

BONVOYAGE Del. 6.1: Technology dependent interfaces Page 63 of 89

which identify the following area of interest reported in Figure 13. The Figure reports data

coming from the Norway NPRA server, and specifically DatexII dynamic info regarding CCTV, road

situations and weather. Each piece of dynamic info is shown in the map, and falls within the

scope of a square tile [see Deliverable D5.1].

*

Figure 13 Data from NPRA DatexII server with area of interest

Prior to subscribing, the consumer probes the OGB Discovery Service to retrieve all the contents

matching this area of interest. The OGB Discovery Service returns a list of names pointing to

ŜǾŜǊȅ ǘƛƭŜ ǘƘŀǘ Ƙŀǎ ƘŀŘ ǇǳōƭƛŎŀǘƛƻƴǎ ƛƴǎƛŘŜ ƛǘǎ ŀǊŜŀΦ ! ǇƻǎǎƛōƭŜ ƭƛǎǘ ƻŦ ǘƛƭŜǎΩ ƴŀƳŜǎ ƛǎΥ

n2n://poliba_datexii/bv/06/63/00/GPS - ID/datexII/npra/cctv

n2n://poliba_datexii/bv/06/63/00/GPS - ID/datexII/npra/weathersite

n2n://poliba_datexii/bv/06/63/00/GPS - ID/datexII/npra/weatherdata

n2n://poliba_datexii/bv/06/63/00/GPS - ID/datexII/npra/situation

n2n:/ /poliba_datexii/bv/06/63/10/GPS - ID/datexII/npra/cctv

éé

éé

n2n://poliba_datexii/bv/11/57/89/GPS - ID/datexII/npra/situation

n2n://poliba_d atexii/bv/11/57/99/GPS - ID/datexII/npra/cctv

n2n://poliba_datexii/bv/11/57/99/GPS - ID/datexII/npra/weathersite

n2n://poliba_datexii/bv/11/57/99/GPS - ID/datexII/npra/weatherdata

n2n://poliba_datexii/bv/11/57/99/GPS - ID/datexII/npra/situation

At this step, the consumer sends the list of names to the Consumer Proxy by using subscribe ,

basically subscribing to one or more tiles, signaling it wants to receive each updated (for instance

